статья Черный январь

Максим Борисов, 12.01.2008

Январь - традиционное время проведения зимних конференций Американского астрономического общества. Сообщения о многих своих открытиях астрономы сознательно придерживают до января, поэтому сейчас новости сыплются как из рога изобилия. В качестве одной из основных тем на 211-й конференции в техасском Остине выступает физика черных дыр.


Комментарии
(написано анонимно) 12.01.2008 11:21 (#)

Поскольку Стивен Хокинг (который проиграл предыдущее пари по данному вопросу, выставив требования в недостаточно общем виде) по-прежнему твердо уверен, что голые сингулярности прокляты и должны быть запрещены законами классической физики, и поскольку Джон Прескилл и Кип Торн (выигравшие предыдущее пари) по-прежнему считают, что голые сингулярности как квантовые гравитационные объекты могут существовать, не будучи укрыты горизонтом, в наблюдаемой нами Вселенной, Хокинг предложил, а Прескилл/Торн приняли следующее пари: Коль скоро любая форма классического вещества или поля, неспособная стать сингулярной в плоском пространстве-времени, подчиняется классическим уравнениям общей теории относительности Эйнштейна, динамическая эволюция из любых начальных условий (то есть от любого открытого набора начальных данных) никогда не сможет породить голую сингулярность (неполную нулевую геодезическую из I+ с конечной точкой в прошлом). Проигравший вознаграждает победителя одеждой, дабы тот мог прикрыть свою наготу. На одежде должно быть вышито соответствующее случаю сообщение. Открыто говорить о путешествиях во времени — весьма щекотливое дело. Вы рискуете сбиться либо на громкие призывы вложить бюджетные деньги в какую-нибудь нелепость, либо на требование засекретить исследования в военных целях. В самом деле, как мы можем защититься от кого-то имеющего в своем распоряжении машину времени? Ведь он способен изменить саму историю и править миром. Лишь немногие из нас достаточно безрассудны, чтобы работать над вопросом, который в среде физиков слывет настолько неполиткорректным. Мы маскируем этот факт при помощи технических терминов, в которых зашифрованы путешествия во времени. Основа всех современных дискуссий о путешествиях во времени — общая теория относительности Эйнштейна. Как следует из предыдущих глав, уравнения Эйнштейна делают пространство и время динамичными, описывая, как те искривляются и искажаются под действием материи и энергии во Вселенной. В общей теории относительности чье угодно персональное время, измеряемое по наручным часам, всегда будет увеличиваться, так же как и в теории Ньютона или в плоском пространстве-времени специальной теории относительности. Но быть может, пространство-время окажется настолько закрученным, что вам удастся улететь на звездолете и вернуться раньше своего отправления . Например, это может случиться, если существуют кротовые норы — упоминавшиеся в главе 4 трубки пространства-времени, которые соединяют различные его области. Идея состоит в том, чтобы направить звездолет в одно устье кротовой норы и появиться из другого в совершенно иных месте и времени (рис. 5.2). Рис. 5.2 Вторая вариация на тему парадокса близнецов (1) Если бы существовала очень короткая кротовая нора, вы могли бы выйти из нее в тот же момент, что и вошли. (2) Можно представить себе, что один конец кротовой норы отправляется в дальнее путешествие на космическом корабле, а другой конец остается на Земле. (3) Из-за парадокса близнецов по возвращении космического корабля у находящегося на нем входа в кротовую нору пройдет меньше времени, чем у того входа, который остался на Земле. Это означает, что если войти в кротовую нору на Земле, то можно оказаться на космическом корабле в более раннее время Кротовые норы, если они существуют, могли бы решить проблему предельной скорости в космосе: согласно теории относительности, чтобы пересечь Галактику, требуются десятки тысяч лет. Но через кротовую нору можно слетать на другой край Галактики и вернуться обратно за время ужина. Между тем легко показать, что, если кротовые норы существуют, ими можно воспользоваться для того, чтобы оказаться в прошлом. Так что стоит подумать, что получится, если вы сумеете, например, взорвать свою ракету на стартовой площадке, чтобы не допустить собственного же полета. Это вариация известного парадокса: что случится, если вы отправитесь в прошлое и убьете собственного дедушку, прежде чем он успеет зачать вашего отца (рис. 5.3)? Рис. 5.3 Может ли пуля пролететь через кротовую нору в прошлое и попасть в того, кто ее выпустил? Конечно, парадокс тут получается только в том случае, если считать, что, оказавшись в прошлом, вы сможете делать что хотите. Эта книга не место для философских дискуссий о свободе воли. Вместо этого мы сконцентрируемся на том, позволяют ли законы физики так скрутить пространство-время, чтобы макроскопическое тело вроде космического корабля могло вернуться в свое прошлое. Согласно теории Эйнштейна космический корабль всегда движется со скоростью, которая меньше локальной скорости света в пространстве-времени, и следует вдоль так называемой времениподобной мировой линии 1. Это позволяет переформулировать вопрос в технических терминах: могут ли в пространстве-времени существовать замкнутые времениподобные кривые, то есть такие, которые снова и снова возвращаются к своей начальной точке? Я буду называть подобные траектории «временными петлями». Искать ответ на поставленный вопрос можно на трех уровнях. Первый — это уровень общей теории относительности Эйнштейна, которая подразумевает, что у Вселенной есть четко заданная история без всякой неопределенности. Для этой классической теории мы имеем законченную картину. Однако, как мы видели, такая теория не может быть абсолютно точной, поскольку согласно наблюдениям материя подвержена влиянию неопределенности и квантовых флуктуаций. Космические струны Космические струны — это длинные тяжелые объекты с крошечным поперечным сечением, которые могли возникнуть на ранних этапах эволюции Вселенной. Однажды возникнув, космическая струна все больше растягивалась бы за счет космологического расширения, и к настоящему времени одна такая струна могла бы пересекать всю наблюдаемую Вселенную. Возможность существования космических струн предполагается современными теориями элементарных частиц, которые предсказывают, что на горячих ранних стадиях развития Вселенной вещество находилось в симметричной фазе, во многом похожей на жидкую воду, которая тоже симметрична — одинакова в каждой точке и во всех направлениях — в отличие от кристаллов льда, имеющих изотропную структуру. Когда Вселенная остыла, симметрия первоначальной фазы была нарушена разным образом в различных отдаленных областях. Как следствие, в этих областях космическое вещество приобрело разные основные состояния. Космические струны — это материальные структуры на границах между такими областями. Поэтому их образование было неизбежным следствием того факта, что отдаленные области могут различаться по основному состоянию. Поэтому можно задать вопрос о путешествиях во времени на втором уровне — для случая полуклассических теорий. Теперь мы рассматриваем поведение материи согласно квантовой теории с неопределенностями и квантовыми флуктуациями, но пространство-время считаем хорошо определенным и классическим. Эта картина не такая целостная, но она, по крайней мере, дает некоторое представление о том, как следует действовать. Наконец, есть подход с позиций полной квантовой теории гравитации, чем бы она в итоге ни оказалась. В этой теории, где не только материя, но также сами время и пространство подвержены неопределенности ифлуктуируют, не вполне ясно даже, как поставить вопрос о возможности путешествий во времени. Пожалуй, лучшее, что можно сделать, — это попросить людей в областях, где пространство-время почти классическое и свободно от неопределенностей, интерпретировать свои измерения. Будет ли им казаться, что в областях с сильной гравитацией и большими квантовыми флуктуациями случаются путешествия во времени? Теорема Гёделя о неполноте В 1931 г. Курт Гёдель доказал знаменитую теорему о природе математики. Эта теорема утверждает, что в любой формальной системе аксиом вроде тех, что используются в современной математике, всегда существуют положения, которые не могут быть ни доказаны, ни опровергнуты на основе аксиом, определяющих систему. Теорема Гёделя наложила фундаментальное ограничение на математику. Она стала настоящим шоком для научного сообщества, поскольку заставила отбросить широко распространенное убеждение, будто математика является согласованной и полной системой, основанной исключительно на логическом фундаменте. Теорема Гёделя, принцип неопределенности Гейзенберга и практическая невозможность проследить эволюцию даже детерминированных систем, когда они становятся хаотическими, составляют ядро набора ограничений, наложенных на научное знание, смысл которых в полной мере был осознан только в XX веке. Рис. 5.4 Допускает ли пространство-время существование замкнутых времениподобных кривых, вновь и вновь возвращающихся к своей исходной точке? Начнем с классической теории: плоское пространство-время специальной теории относительности (без гравитации) не позволяет путешествовать во времени, невозможно это и в тех искривленных вариантах пространства-времени, которые изучались на первых порах. Эйнштейн был буквально шокирован, когда в 1949 г. Курт Гёдель, тот самый, что доказал знаменитую теорему Гёделя, открыл что пространство-время во вселенной, целиком заполненной вращающейся материей, имеет временную петлю в каждой точке (рис. 5.4). Решение Гёделя требовало введения космологической постоянной, которой может в реальности и не быть, но позднее были найдены подобные решения без космологической постоянной. Особенно интересен случай, когда две космические струны движутся друг мимо друга на высокой скорости. Космические струны не следует путать с элементарными объектами теории струн, с которыми они совершенно не связаны. Подобные объекты имеют протяженность, но при этом обладают крохотным поперечным сечением. Их существование предсказывается в некоторых теориях элементарных частиц. Пространство-время за пределами одиночной космической струны плоское. Однако это плоское пространство-время имеет клинообразный вырез, вершина которого лежит как раз на струне. Оно похоже на конус: возьмите большой круг из бумаги и вырежьте из него сектор, подобный куску пирога, вершина которого расположена в центре круга. Удалив вырезанный кусок, склейте края разреза у оставшейся части — получится конус. Он изображает пространство-время, в котором существует космическая струна (рис. 5.5). Заметьте, поскольку поверхность конуса — это всё тот же плоский лист бумаги, с которого мы начали (за вычетом удаленного сектора), его можно по-прежнему считать плоским, за исключением вершины. Наличие кривизны в вершине можно выявить по тому факту, что описанные вокруг нее окружности имеют меньшую длину, чем окружности, удаленные на такое же расстояние от центра на исходном круглом листе бумаги. Иными словами, окружность вокруг вершины короче, чем должна быть окружность того же радиуса в плоском пространстве из-за отсутствующего сектора (рис. 5.6). Рис. 5.6 Космическая струна вырезает сектор из пространства-времени Подобным же образом удаленный из плоского пространства-времени сектор укорачивает окружности вокруг космической струны, но не влияет на время или расстояние вдоль нее. Это означает, что пространство-время вокруг отдельной космической струны не содержит временных петель, и, следовательно, путешествия в прошлое невозможны. Однако если есть вторая космическая струна, которая движется относительно первой, ее направление времени будет комбинацией времени и пространственных изменений первой. Это значит, что сектор, который вырезается второй струной, будет сокращать как расстояния в пространстве, так и интервалы времени для наблюдателя, который движется вместе с первой струной (рис. 5.7). Если струны движутся друг относительно друга с околосветовой скоростью, сокращение времени при обходе обеих струн может быть столь значительным, что вы вернетесь обратно раньше, чем стартуете. Другими словами, здесь имеются временные петли, по которым можно путешествовать в прошлое. Рис. 5.7 Cекторы с непараллельными краями, удаленные из пространства-времени Космические струны содержат материю, обладающую положительной плотностью энергии, что совместимо с известной на сегодня физикой. Однако скручивание пространства, которое порождает временные петли, тянется до самой бесконечности в пространстве и до бесконечного прошлого во времени. Так что подобные структуры пространства-времени изначально, по построению допускают возможность путешествий во времени. Нет оснований считать, что наша собственная Вселенная скроена по такому извращенному фасону, у нас нет надежных свидетельств появления гостей из будущего. (Я не принимаю в расчет конспирологические теории о том, что НЛО прилетают из будущего, а правительство знает об этом, но скрывает правду. Обычно оно скрывает не столь замечательные вещи.) Поэтому я буду предполагать, что временных петель не было в далеком прошлом, а если точнее, то в прошлом относительно некоторой поверхности в пространстве-времени, которую я обозначу S. Вопрос: может ли высокоразвитая цивилизация построить машину времени? То есть может ли она изменить пространство-время в будущем относительно S (выше поверхности S на диаграмме) таким образом, чтобы петли появились только в области конечного размера? Я говорю о конечной области потому, что как бы ни была развита цивилизация, она, по-видимому, способна контролировать только ограниченную часть Вселенной. В науке правильно сформулировать задачу часто значит найти ключ к ее решению, и рассматриваемый нами случай — хорошая тому иллюстрация. За определением финитной 2 машины времени я обращусь к одной из моих старых работ. Путешествие во времени возможно в некоторой области пространства-времени, где имеются временные петли, то есть траектории с досветовой скоростью движения, которые тем не менее умудряются вернуться в исходное место и время вследствие искривления пространства-времени. Поскольку я предположил, что в далеком прошлом временных петель не было, должен существовать, как я его называю, «горизонт путешествий во времени» — граница, которая отделяет область, содержащую временные петли, от области, где их нет (рис. 5.8). Рис. 5.8 Даже самая могущественная цивилизация может искривить пространство-время только в конечной (финитной) области. Горизонт путешествий во времени — граница той части пространства-времени, в которой можно путешествовать в чье-то прошлое, — должен быть образован лучами света, исходящими из этой финитной области Горизонт путешествий во времени весьма похож на горизонт черной дыры. В то время как последний образуется световыми лучами, которым не хватает самой малости, чтобы покинуть черную дыру, горизонт путешествий во времени задается лучами, находящимися на грани встречи с самими собой. Далее я буду считать критерием машины времени наличие так называемого финитно порожденного горизонта, то есть сформированного световыми лучами, которые испущены из области ограниченного размера. Иными словами, они не должны приходить из бесконечности или сингулярности, а только из конечной области, содержащей временную петлю, такой области, которую, как мы предполагаем, будет способна создать наша высокоразвитая цивилизация. Рис. 5.9 Опасность путешествия во времени С принятием такого критерия машины времени появляется замечательная возможность использовать для изучения сингулярностей и черных дыр методы, которые разработали мы с Роджером Пенроузом. Даже не используя уравнения Эйнштейна, я могу показать, что в общем случае финитно порожденный горизонт будет содержать световые лучи, которые встречаются сами с собой, продолжая снова и снова возвращаться в одну и ту же точку. Делая круг, свет каждый раз будет испытывать всё более и более сильное голубое смещение, а изображения будут становиться всё синее и синее. Горбы волн в пучке начнут всё больше сближаться друг с другом, а интервалы, через которые возвращается свет, сделаются всё короче и короче. Фактически у частицы света будет конечная история, если рассматривать ее в собственном времени, даже несмотря на то, что она нарезает круги в конечной области и не попадает в сингулярную точку кривизны. То, что частица света исчерпает свою историю за конечное время, может показаться несущественным. Но я могу также доказать возможность существования мировых линий, скорость движения по которым меньше световой, а продолжительность — конечна. Это могут быть истории наблюдателей, которые пойманы в конечную область перед горизонтом и двигаются круг за кругом всё быстрее и быстрее, пока не достигнут за конечное время скорости света. Так что, если красивая пришелица из летающей тарелки приглашает вас в свою машину времени, будьте осторожны. Вы можете попасть в ловушку повторяющихся историй с конечной общей продолжительностью (рис. 5.9). Рис. 5.10 Предсказание о том, что черные дыры испускают излучение и теряют массу, подразумевает, что квантовая теория заставляет отрицательную энергию течь в черную дыру через горизонт. Чтобы черная дыра уменьшилась в размерах, плотность энергии на горизонте событий должна быть отрицательной, то есть иметь как раз тот знак, который требуется для построения машины времени Эти результаты не зависят от уравнения Эйнштейна, а только от того, каким образом пространство-время скручено для получения временной петли в конечной области. Но все-таки что за материал могла бы использовать высокоразвитая цивилизация, чтобы построить машину времени конечных размеров? Может ли он везде иметь положительную плотность энергии, как в случае с описанным выше пространством-временем космической струны? Космическая струна не удовлетворяет моему требованию, чтобы временные петли появлялись только в конечной области. Но можно было бы подумать, будто это обусловлено лишь тем, что струны имеют бесконечную длину. Кто-то, возможно, надеется построить конечную машину времени, используя конечные петли из космических струн, имеющих всюду положительную плотность энергии. Жаль разочаровывать людей, которые, подобно Кипу, хотят вернуться в прошлое, но это невозможно сделать, сохраняя везде положительную плотность энергии. Я могу доказать, что для постройки конечной машины времени вам понадобится отрицательная энергия. В классической теории плотность энергии всегда положительна, так что существование конечной машины времени на этом уровне исключается. Но ситуация меняется в полуклассической теории, где поведение материи рассматривается в соответствии с квантовой теорией, а пространство-время считается хорошо определенным, классическим. Как мы видели, принцип неопределенности в квантовой теории означает, что поля всегда флуктуируют вверх и вниз, даже в пустом, казалось бы, пространстве, и обладают бесконечной плотностью энергии. Ведь только вычтя бесконечную величину, мы получаем конечную плотность энергии, которую наблюдаем во Вселенной. Это вычитание может дать и отрицательную плотность энергии, по крайней мере локально. Даже в плоском пространстве можно найти квантовые состояния, в которых плотность энергии локально отрицательна, хотя общая энергия положительна. Интересно, действительно ли эти отрицательные значения заставляют пространство-время искривляться так, чтобы возникла финитная машина времени? Похоже, что они должны к этому приводить. Как явствует из главы 4, квантовые флуктуации означают, что даже пустое на первый взгляд пространство заполнено парами виртуальных частиц, которые вместе появляются, разлетаются, а затем сходятся снова и аннигилируют друг с другом (рис. 5.10). Один из элементов виртуальной пары будет иметь положительную энергию, а другой — отрицательную. При наличии черной дыры частица с отрицательной энергией может упасть на нее, а частица с положительной энергией — улететь на бесконечность, где она будет выглядеть как излучение, уносящее положительную энергию из черной дыры. А частицы с отрицательной энергией, падая в черную дыру, приведут к уменьшению ее массы и медленному испарению, сопровождаемому уменьшением размеров горизонта (рис. 5.11). Рис. 5.11 Квантовое испарение черной дыры Обычная материя с положительной плотностью энергии порождает притягивающую гравитационную силу и искривляет пространство-время так, что лучи поворачивают друг к другу, в точности как шар на резиновом листе из главы 2 всегда заворачивает маленький шарик к себе и никогда — прочь. Отсюда вытекает, что площадь горизонта черной дыры со временем только увеличивается и никогда не сокращается. Чтобы горизонт черной дыры уменьшился, плотность энергии на горизонте должна быть отрицательной, а пространство-время должно заставлять лучи света расходиться. Я впервые понял это как-то раз, ложась спать, вскоре после рождения моей дочери. Не скажу точно, как давно это было, но сейчас у меня уже есть внук. Испарение черных дыр показывает, что на квантовом уровне плотность энергии может иногда быть отрицательной и искривлять пространство-время в направлении, которое было бы нужно для построения машины времени. Так что можно представить цивилизацию, стоящую на такой высокой ступени развития, что она способна добиться достаточно большой отрицательной плотности энергии, чтобы получить машину времени, которая годилась бы для макроскопических объектов вроде космических кораблей. Однако есть существенное различие между горизонтом черной дыры, формируемым лучами света, которые просто продолжают двигаться, и горизонтом в машине времени, который содержит замкнутые лучи света, продолжающие наворачивать круги. Виртуальная частица, раз за разом движущаяся по такому замкнутом пути, приносила бы в одну и ту же точку свою энергию основного состояния. Поэтому следует ожидать, что на горизонте, то есть на границе машины времени — области, в которой можно путешествовать в прошлое, — плотность энергии окажется бесконечной. Это подтверждается точными вычислениями в ряде частных случаев, которые достаточно просты, чтобы можно было получить точное решение. Выходит, что человек или космический зонд, который попробует пересечь горизонт и попасть в машину времени, будет полностью уничтожен завесой излучения (рис. 5.12). Так что будущее путешествий во времени выглядит довольно мрачным (или следует сказать «ослепительно ярким»?). Плотность энергии вещества зависит от состояния, в котором оно находится, так что, возможно, высокоразвитая цивилизация сумеет сделать плотность энергии на границе машины времени конечной, «замораживая» или удаляя виртуальные частицы, которые круг за кругом движутся по замкнутой петле. Нет, однако, уверенности, что такая машина времени будет устойчивой: малейшее возмущение, например кто-то пересекающий горизонт, чтобы войти в машину времени, может запустить циркуляцию виртуальных частиц и вызвать испепеляющую молнию. Этот вопрос физикам следует свободно обсуждать, не боясь презрительных насмешек. Даже если окажется, что путешествия во времени невозможны, мы поймем, почему они невозможны, а это важно. Рис. 5.12 Тот, кто попробует пересечь горизонт путешествий во времени, может быть уничтожен завесой излучения Чтобы со всей определенностью ответить на обсуждаемый вопрос мы должны рассмотреть квантовые флуктуации не только материальных полей, но и самого пространства-времени. Можно ожидать, что это вызовет некоторую размытость в путях световых лучей и в целом в принципе хронологического упорядочивания. В действительности можно рассматривать излучение черной дыры как утечку, вызванную квантовыми флуктуациями пространства-времени, которые свидетельствуют, что горизонт определен не вполне точно. Поскольку у нас пока нет готовой теории квантовой гравитации, трудно сказать, каков должен быть эффект флуктуаций пространства-времени. Но несмотря на это, мы можем надеяться получить некоторые подсказки из фейнмановского суммирования историй, описанного в главе 3. Рис. 5.13 Фейнмановская сумма по историям включает истории, в которых частица движется назад во времени, и даже истории, представляющие собой замкнутые петли в пространстве и времени Каждая история будет искривленным пространством-временем с материальными полями в нем. Поскольку мы собираемся суммировать по всем возможным историям, а не только по тем, которые удовлетворяют некоторым уравнениям, сумма должна включать и такие пространства-времена, которые достаточно закручены для путешествий в прошлое (рис. 5.13). Тогда возникает вопрос: почему такие путешествия не происходят повсеместно? Ответ состоит в том, что перемещения во времени на самом деле имеют место в микроскопическом масштабе, но мы их не замечаем. Если применить фейнмановскую идею суммирования по историям к одной частице, то надо включить истории, в которых она движется быстрее света и даже назад во времени. В частности, будут и такие истории, в которых частица движется круг за кругом по замкнутой петле во времени и пространстве. Как в фильме «День сурка», где репортер проживает одни и те же сутки снова и снова (рис. 5. 14). Частицы с такими замкнутыми в петлю историями нельзя наблюдать на ускорителях. Однако их побочные проявления можно измерить, наблюдая ряд экспериментальных эффектов. Один из них — это незначительный сдвиг в излучении, испускаемом атомами водорода, который вызван электронами, движущимися по замкнутым петлям. Другой — небольшая сила, действующая между параллельными металлическими пластинами и вызванная тем, что между ними помещается чуть меньше замкнутых петель, чем во внешних областях, — это другая эквивалентная трактовка эффекта Казимира. Таким образом, существование замкнутых в петлю историй подтверждается экспериментом (рис. 5.15). Можно поспорить о том, имеют ли подобные закольцованные истории частиц какое-то отношение к искривлению пространства-времени, поскольку они возникают даже на таком неизменном фоне, как плоское пространство. Но в последние годы мы обнаружили, что физические явления часто имеют в равной мере корректные дуальные описания. Можно с равным основанием говорить о том, что частицы движутся по замкнутым петлям на неизменном фоне или что они остаются неподвижными, а вокруг них флуктуирует пространство-время. Это сводится к вопросу: хотите ли вы сначала суммировать по траекториям частиц, а потом по искривленным пространствам-временам или наоборот? Таким образом, квантовая теория, по-видимому, позволяет перемещаться во времени в микроскопическом масштабе. Но для научно-фантастических целей вроде полета в прошлое и убийства своего дедушки от этого мало пользы. Поэтому остается вопрос: может ли вероятность при суммировании по историям достичь максимума на пространствах-временах с макроскопическими петлями времени? Исследовать этот вопрос можно, рассматривая суммы по историям материальных полей на последовательности фоновых пространств-времен, которые становятся всё ближе и ближе к тому, чтобы допускать петли времени. Было бы естественно ожидать, что в момент, когда временная петля впервые появляется, должно случиться нечто знаменательное. Так оно и произошло в простом примере, который я изучал с моим студентом Майклом Кассиди. Может ли некая высокоразвитая цивилизация построить машину времени? Фоновые пространства-времена, которые мы изучали, были тесно связаны с так называемой вселенной Эйнштейна, пространством-временем, которое Эйнштейн предложил, когда еще верил, что Вселенная является статической и неизменной во времени, не расширяющейся и не сжимающейся (см. главу 1). Во вселенной Эйнштейна время идет от бесконечного прошлого к бесконечному будущему. А вот пространственные измерения конечны и замкнуты сами на себя, подобно поверхности Земли, но только с числом измерений на одно больше. Такое пространство-время можно изобразить как цилиндр, продольная ось которого будет временем, а сечение — пространством с тремя измерениями (рис. 5.16). Рис. 5.16 Вселенная Эйнштейна подобна цилиндру: конечна в пространстве и неизменна во времени. Благодаря своему конечному размеру она может вращаться, ни в какой точке не превосходя скорости света Так как вселенная Эйнштейна не расширяется, она не соответствует той Вселенной, в которой мы живем. Тем не менее это удобная основа для обсуждения путешествий во времени, поскольку она достаточно проста, чтобы можно было выполнить суммирование по историям. Забудем ненадолго о путешествиях во времени и рассмотрим вещество во вселенной Эйнштейна, которая вращается вокруг некоторой оси. Если вы окажетесь на этой оси, то будете оставаться в одной и той же точке пространства, как будто стоите в центре детской карусели. Но, расположившись в стороне от оси, вы будете двигаться в пространстве вокруг нее. Чем дальше от оси, тем быстрее будет ваше движение (рис. 5.17). Так что, если вселенная бесконечна в пространстве, достаточно далекие от оси точки будут вращаться со сверхсветовой скоростью. Но, поскольку вселенная Эйнштейна конечна в пространственных измерениях, существует критическая скорость вращения, при которой ни одна ее часть еще не будет вращаться быстрее света. Теперь рассмотрим сумму по историям частицы во вращающейся вселенной Эйнштейна. Когда вращение медленное, имеется много путей, по которым может двигаться частица при данном количестве энергии. Поэтому суммирование по всем историям частицы на таком фоне дает большую амплитуду. Это означает, что вероятность такого фона при суммировании по всем историям искривленного пространства-времени будет высока, то есть он относится к числу более вероятных историй. Однако по мере того как скорость вращения вселенной Эйнштейна приближается к критической отметке, а скорость движения ее внешних областей стремится к скорости света, остается единственный путь, который допустим для классических частиц на краю вселенной, а именно движение со скоростью света. Это означает, что сумма по историям частицы будет мала, а значит, вероятности таких пространственно-временных фонов в сумме по всем историям искривленного пространства-времени окажутся низкими. То есть они будут наименее вероятными. Рис. 5.17 Вращение в плоском пространстве. В плоском пространстве скорость твердотельного вращения вдали от оси превосходит скорость света Но какое отношение к путешествиям во времени и временным петлям имеют вращающиеся вселенные Эйнштейна? Ответ состоит в том, что они математически эквивалентны другим фонам, в которых возможны петли времени. Эти другие фоны — вселенные, которые расширяются в двух пространственных направлениях. Такие вселенные не расширяются в третьем пространственном направлении, которое является периодическим. То есть если вы пройдете определенное расстояние в этом направлении, то окажетесь там, откуда стартовали. Однако с каждым кругом в этом направлении ваша скорость в первом и втором направлениях будет возрастать (рис. 5.18). 5.18 Фон с замкнутыми времениподобными кривыми Если разгон невелик, то временных петель не существует. Рассмотрим, однако, последовательность фонов с всё большим приращением скорости. Петли времени появляются при некоторой критической величине разгона. Неудивительно, что этот критический разгон соответствует критической скорости вращения вселенных Эйнштейна. Поскольку вычисление суммы по историям на обоих этих фонах математически эквивалентно, можно заключить, что вероятность таких фонов стремится к нулю по мере приближения к искривлению, необходимому для получения петель времени. Другими словами, вероятность искривления, достаточного для машины времени, равна нулю. Это подтверждает то, что я называю гипотезой защиты хронологии: законы физики устроены так, что не допускают перемещения во времени макроскопических объектов. Хотя временные петли разрешены при суммировании по историям, их вероятности получаются чрезвычайно низкими. Основываясь на упоминавшихся выше соотношениях дуальности, я оценил вероятность того, что Кип Торн сможет отправиться в прошлое и убить своего дедушку: она оказалась меньше чем единица к десяти в степени триллион триллионов триллионов триллионов триллионов. Это просто удивительно низкая вероятность, но если вы внимательно посмотрите на фотографию Кипа, то заметите легкую дымку по краям. Она соответствует исчезающе малой вероятности того, что какой-то проходимец из будущего отправится в прошлое и убьет его дедушку, и потому Кипа на самом деле здесь нет. Будучи азартными людьми, мы с Кипом хотели бы заключить пари по поводу аномалии вроде этой. Проблема, однако, в том, что мы не можем этого сделать, поскольку сейчас придерживаемся единого мнения. А с кем-то другим я пари заключать не стану. Вдруг он окажется пришельцем из будущего, знающим, что путешествия во времени возможны? Вам показалось, что эта глава написана по указке правительства, чтобы скрыть реальность путешествий во времени? Возможно, вы правы. ---------------------------------------------------------------------- ---------- 1 Мировая линия — это путь в четырехмерном пространстве-времени. Времениподобные мировые линии совмещают перемещение в пространстве с естественным движением вперед во времени. Только по таким линиям могут следовать материальные объекты. 2 Финитный — имеющий конечные размеры.



(написано анонимно) 12.01.2008 11:27 (#)

простите,link-не получаеться

кому это интересно можно найти на сайт "элементы"-там печатают главы книги Хокинга

(написано анонимно) 12.01.2008 15:02 (#)

Посколку жизнедеятельность людей теснешийм образом связанна со сменой дня и ночи, т. е. с вращением Земли вокруг своей оси, этот процесс и использовался для измерения В. на протяжении многих тысячелетий...тут не об этом:- ещё используют и излучение (поглощение) эл.-магн. волн атомами или молекулами нек-рых в-тв при определённых внеш. условиях.Атомная секунда явл. одной из семи осн. единиц Международной системы единиц (СИ). На практике Между народная шкала атомного времени (TAI) реализуется путём усреднения показаний неск. десятков атомных (цезиевых) часов служб времени различных стран. Показания всех часов анализируются и уссредняються в Международном бюро времени в Париже.Изобретение атомных стандартов В. и частоты позволило получить новую шкалу В., независимую от вращения Земли и имеющую значительно большую точность. В качестве единицы атомного В. принята атомная секунда, определяемая как "время, периодам излучения", соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия 133". Это определение принято в 1967 Относительная погрешность совр. промышленных атомных часов колеблется от 1.10(в-13ст) до 1.10(в-14ст), что позвольяет отдельным службам В. сохранять шкалу TAI с погрешностью ~1 мкс за год...Время-физ величина и считаеться необратимой...

(написано анонимно) 12.01.2008 15:53 (#)

наверно -там это имеет место быть...

Согласно положениям электродинамики, заряд, движущийся с ускорением или торможением, излучает эл.-магн. волны. В космич. условиях торможение (или ускорение) зарядов может быть вызвано либо их притяжением или оталкиваннием при сближеньи е- и ионов, либо их центробеженым ускореньем при движени во вн. магн. полях. Т.и. наз. механизмом излучения. Другой механизм - излучение при торможении частиц во внеш. магн. поле - наз. магнитотормозным (циклотронным и синхротронным). Т.и. обычно возникает в ионизованном газе благодаря столкновениям тепловых е- с ионами. Часто Т.и. также наз. излучением при свободно-свободных переходах, т.к. его можно связать с переходами электронов с одной орбиты на другую, не сопровождающимися с захватом электрона ионом. При этих переходах излучается весь спектр частот эл.-магн. волн, в том числе рентг. лучи (если темп-ра достаточно высока) и радиоволны. Спектр Т.и. непрерывен и обрывается при максимально возможной энергии, равной начальной энергии электрона. Энергия Т.и. из ед. объема плазмы внутри телесного угла в единичном интервале частот в ед. времени (т.н. коэфф. излучения) С помощью этого механизма объясняют также излучение нек-рых рентг. источников. Реже встречается Т.и. нетепловых е- космических лучей, дающее вклад в гамма-излучение Галактики и др. объектов, Т.и. е- на е- (оно существенно при темп-ре газа К), а также Т.и. электронов на отрицательных ионах идаже на нейтральных атомах. Существование последнего связано с конечными разммерами атомов, из-за чего электрон, проходя близко от центра атома, испытывает слабое ускорение, обусловленное разностью эллектрастатических сил, действующих на него со стороны ядра и электронных оболочек. Т.и. на нейтральных атомах и отрицательных ионах существенно в атмосферах холодных звезд при T < 6000-7000 К.

(написано анонимно) 12.01.2008 18:48 (#)

in the link получалось или слишком много про Хокинга,что к тексту отношения не имеет ,или часть из "Элементов" или вовсе ничего,но то,что в "Элементах"-очень интересно...( теперь досвидание)

(написано анонимно) 12.01.2008 13:15 (#)

Бербидж Дж., Бербидж М., Квазары,-из книги

Квазары (англ. quasar, сокр. от quasistellar radiosource - квазизвёздный источник радиоизлучения) - мощные внегалактич. источники эл.-магн. излучения, имеющие на фотографиях звездообразный вид. Были открыты в 1960 г. как источники радиоизлучения с очень малыми угловыми размерами (меньше 10") и затем отождествлены с оптич. объектами, имеющими, как правило, визуальную звёздную величину . В 1963 г. М. Шммидт (USA) устанновил что нек-рые широкие эмисионные линии в спектре К. ЗС 273, ранее не поддававшиеся расшифровке, принадлежат линиям бальмеровской серии водорода и линиям MgII, сильно смещённым в красную сторону. К. ЗС 273- один из самых ярких, он имеет визуальную звёздную величину mV=12,7m и красное смещение линий в спектре z= 0,158, что соответствует расстоянию 630 Мпк. Другие К., согласно красным смещениям их спектр. линий, находятся на столь же больших (космологических) расстояниях (> 200 Мпк). Помимо щирроких эмисионных линий со значит. краснным смещением для К. характерно нетепловое излучение по к-рому К. нетрудно отличить от звёзд главной последовательности и белых карликов. Число открываемых К. непрерывно растёт, известно более 1500 К. с измеренными красными смещениями, причём среди них больше оптич. К. (без заметного радиоизлучения), чем радиоквазаров. Весьма вероятно, что К. явл. нестационарными ядрами далёких галактик, у к-рых звёздная составляющая излучает слабо и не видна (однако около нескольких близких К. обнаружены слабые туманности, состоящие из звёзд.) К.- самые мощнные по излученнью объекты во Вселенной. Мощность излучения (светимость) К., включая радио-, ИК-, оптич., УФ-, рентг. диапазоны, а в отдельных случаях и -диапазон, достигает 10(в46ст)-10(в47ст) эрг/с. По светимости К. примыкают к т.н. сейфертовским галактикам и подобно им обладают переменностью излучения. Характерные времена переменности К.- месяцы и даже недели - указывают на то, что область генерации энергии излучения у К. невелика, ~ 10(в16ст)-10(в17ст) см, т.е. < 1 пк. Физ. механизм, ответственный за генерацию столь мощного излучения в относительно небольшом объёме, пока достоверно неизвестен. Процессы, происходящие в К., явл. предметом интенсивных теоретич. исследований Не исключено, что механизм энерговыделения в К. связан с аккрецией газа на массивную чёрную дыру. В спектрах далёких К. обнаружены узкие линии поглощения водорода и ионов тяжёлых элементов. В тех случаях, когда удаётся отождествить серии таких абсорбционных линий, оказывается, что красное смещение, определённое по линиям поглощения, меньше, чем найденное по эмиссионным линиям. Иногда наблюдается неск. таких серий с разными z. Природа узких линий поглощения остаётся неясной; обычно предполагается, что эти линии образуются на пути между К. и наблюдателем. Поглощающей средой могут быть обширные короны галактик или отдельные облака холодного газа в межгалактич. пространстве. Не исключено, что такие облака могут быть остатками диффузной среды, из к-рой образовались галактики. Исследование К., находящихся на расстояниях в миллиарды световых лет, чрезвычайно важно для космологии, в частности для выбора космологич. модели, наиболее полно отражающей св-ва реальной Вселенной.

(написано анонимно) 15.01.2008 06:09 (#)

сведенья может иотносительно новые,но могут с

В соответствии с современными теориями, мощнейшее излучение квазаров обязано своему появлению процессам поглощения сверхмассивными BH(в миллиарды раз превышающими массу нашего Солнца) окружающего газа, звезд и планет. В более позднее время сверхмассивные черные дыры образовывались уже только в очень массивных галактиках, но на заре Вселенной все было не так - а ведь большинство ярких квазаров сформировалось именно тогда, когда возраст Вселенной составлял лишь приблизительно треть от ее нынешнего возраста....

(написано анонимно) 15.01.2008 07:23 (#)

Американские, японские и европейские астрономы получили решающее свидетельство в пользу теории, согласно которой первая пыль во Вселенной - то есть тот материал, из которого возникли (и возникают) все более-менее поздние поколения звезд и планет - появилась в результате взрывов массивных первородных звезд.А роst 03:09:31-пусть не считаеться ответом Дромосу(хоть кто-то и может его таковым посчитать)-это одно из звеньев менее популярной теории( проигравшей?-из-за использования на"Спицере"-более совершенных ПЗС)ю зарождении во Вселенной 1-род. пыли(очень и очень мало популярная теория)

абсолютно женский взгляд на совершеннейшим образо мужские вещи 15.01.2008 11:37 (#)

Максим ,простите меня за супербестактность,статья настолько классная ,что хочеться с ней немного поиграться

Утверждению ,того,что "первородная пыль"-произошла врезультате взрыва сверхновой-могло противоречить( сформулируйте это сами-это участников форума тоже касаеться)... Вселенная могла представлять собой пространство, заполненное одними лишь крошечными первородными ВН, к-рые затем в основном испарились или слились в супермонстров. Доктор Мартин Хэнелт (Martin Haehnelt), преподаватель из Астрономического института (Institute of Astronomy) Кембриджского университета, вместе с Мартином Рисом (Martin Rees), носящего звание Королевского астронома, представляли новые свидетельства в пользу этой спорной пока теории на конференции по физике, проходящей в Физическом институте (Institute of Physics, информация на русском языке)...Все Ваши статьи ,Максим,ну наприм "ВН-могут содержать жидкость"авauт opinion of Dam Thanh Son fromInstitute for Nuclear Theory (University of Washington), and Pol Коvatun fromUniversity of California, and(Andrei StarinetsИнститута теоретической физи) - рассмотрел черную дыру в рамках метода "масштаб/гравитация" (gauge/gravity), считает, что вне зависимости от того, как мы назовем эту новую субстанцию, в четырехмерном пространстве-времени ее можно считать самой совершенной из всех известных жидкостей, потому что она обладает ультранизкой вязкостью (своего рода сверхтекучестью)+"это супчик"из субатомных частиц... я не могу их все отыскать и не требую ,чтоб Вы их сами помнили,конечно Ваша работа сводиться к тому ,чтоб находить и переводить интересные статьи и с этим вы отлично справляетесь ,я, как впрочем и кто либо другой, не вправе Вам давать советы,но я думаю ,что лучше Вам стараться не отказываться от собственного мнения(я знаю оно у Вас есть)-даже если каждая полученная Вами информация противоречит имеющимся у Вас на руках фактам,просто дополнять его...

действительно "когда хорошо-тогда и плохо"-попробую больше не му 15.01.2008 11:51 (#)

это не сравнение и не нравоучени....

..."В 1931 г. Курт Гёдель доказал знаменитую теорему о природе математики. Эта теорема утверждает, что в любой формальной системе аксиом вроде тех, что используются в современной математике, всегда существуют положения, которые не могут быть ни доказаны, ни опровергнуты на основе аксиом, определяющих систему. Теорема Гёделя наложила фундаментальное ограничение на математику..."-это я о том ,что в Вашей изначальной професии отвергнутых теорий не бывает...(вы не должны зависить от желаний участников форума(главное-статьи коменты можно стереть или не читая пропустить...))-всё ,что Вы пишите,пишите только для своей души-ну Вы наверно догадались,что ещё могло породить"первородную пыль?"...

"Грани "хорошая забавная газете, с неболюшой политической добавк 15.01.2008 12:51 (#)

дай Бог ,чтоб Вас терзали разные посетители,а не только полит-озабоченные...пусть они будут по-разному развиты в естественных науках...

Что "ловят" с помощью гармонического анализа исследуемого сигнала, Фурье-анализ ( ряд Фурье-кто он такой?,человек пытавшися всё обощить). Квантовый выход - отношение числа эмитируемых (выбитых) из вещества фотоэлектронов к числу упавших фотонов . Термин "К. в.", строго говоря, применим лишь к детекторам излучений, использующим внеш. фотоэлектрич. эффект в газах и с поверхности твёрдых тел. чувствительность фотокатода или всего детектора в целом. Реальная чувствительность при астрономич. наблюдениях, т.е. минимально обнаружимый сигнал (световой поток), определяется помимо К. в. уровнем шума, к-рый, в свою очередь, зависит от шума детектора и регистрирующей аппаратуры, уровня фона неба и др. источников помех, напр. при внеатмосферных наблюдениях - от потока заряженных частиц. Квантовый выход для некоторых типов современных ФЭУ: 1 - CsI, 2 - CsTe, 3 - мультищелочной, 4 - SbCs, 5 - AgOCs. В области мягкого рентг. излучения и жёсткого УФ-излучения используются гейгеровские и пропорциональные счётчики с газовым наполнением, К. в. к-рых без учёта пропускания окна в максимуме близок к единице. В УФ-диапазоне применяются в качестве наполнителей счётчиков окись азота (), ксилол, спирты, бромистый метил и др. вещества. Их К. в. близок к единице. В мягком рентг. диапазоне (0,1-10 кэВ) используются в качестве газов-наполнителей Ar, Kr и Хе с К. в. в максимуме, близком к единице. К. в. твёрдых тел в этой области спектра может даже превышать единицу (эффект Лукирского).( современное-это то,на чём основаны Спицер,Чандра и Мастер...)-полностью отличаеться картинка,чем при старомодных методах-обрабат компами,но присутствие человека тоже необходимо.впрочем "техника-порой убивает воображение"-ну давайте по-фантазируем чтоли ,пусть будет так :-Первые ВН-породили большие протозвёзды-они стали SN и взорвались,породив "первородную пыль"---добавте терминологию и немного о эволюции звёзд и вот "домашняя космология "-готова ине делите друг друга на профи и любителей-не будте "примадоннами".... Высоким К. в. в УФ- и мягком рентг. диапазонах обладают канальные фотоэлектронные умножители и микроканальные пластины. Лит.: Фотоэлектронные приборы, М., 1965; Берковский А.Г., Гаванин В.А., Зайдель И.Н., Вакуумные фотоэлектронные приборы, М., 1976. (В.Г. Курт) ---------------------------------------------------------------------- ---------- А | Б | В | Г | Д | З | И | К | Л | М | Н | О | П | Р | С | Т | У | Ф | Х | Ц | Ч | Ш | Э | Я Публикации с ключевыми словами: квантовый выход - светоприемники - детекторы излучения Публикации со словами: квантовый выход - светоприемники - детекторы излучения См. также: В.Ф. Сулейманов "Рентгеновская Астрономия" Закон Вавилова Рентгеновская астрономия Обсудить эту публикацию Оценка: 3.0 [голосов: 2] О рейтинге --Оцените--ОтличноХорошоСреднеПлохоНе годится Версия для печати ---------------------------------------------------------------------- ---------- Астронет | Научная сеть | ГАИШ МГУ | Поиск по МГУ | О проекте | Авторам Комментарии, вопросы? Пишите: [email protected] или сюда

(написано анонимно) 15.01.2008 13:56 (#)

р/sтермины и форму

Нам всем есть где себя реализовать,не только здесь,но коменты-раскрепощают....( тут можно и вопросы задавать ,даже грубые ошибки тоже по-своему простительны...

(написано анонимно) 12.01.2008 14:03 (#)

простите за глупый вопрос.....Что происходит ,когда ВН-сливаються?

"Нужно отметить, что в течении ближайшего десятка тысяч лет эти черные дыры неизбежно сольются (постепенно теряя орбитальный момент при излучении гравитационных волн)".

livejournal.com akorkov [livejournal.com], 12.01.2008 16:29 (#)

хотя бы вот: http://xray.sai.msu.ru/~polar/sci_rev/175.html#arxiv/0712.2460

(написано анонимно) 12.01.2008 17:23 (#)

Many thanks it's so interesting.All the best.Goodbye,see you soon...

(написано анонимно) 13.01.2008 01:37 (#)

Когда слишком хорошо бывает плохо.

Комментаторы-энтузиасты буквально закопали интересную научно-популярную статью обилием информации, непонятной одним и (по-видимому) неинтересной другим (специалистам) читателям. Спецы, развивайтесь на сайте Хокинга, читайте и пишите по-английски, оставьте научно-популярный раздел Граней и господина Борисова на растерзание политически озабоченным малообразованным (в естественных науках) посетителям сайта.

(написано анонимно) 13.01.2008 12:45 (#)

простие,пожалуй Вы правы,на этот раз господин Борисов превзошол да

Максим ,как -то писал о нейтронной звезде(я не помню за какой месяц( дахе название тоже,помню только "про ,что" статья искать неохота)-там было похоже на то,что ВН-взорвала звезду ,проходившую рядом,"оболочку" притянула к себе гравитацией (она там полетела ,как бы навстречу нейтронному ядру-ну похоже было на то),а для нейтронной звезды сыграла роль своего рода "гравитационная рогатка",( но может там иассимитричный взрыв был ,дело не в этом)А в этой статье про двойную систему, состоящей из двух черных дыр, - квазаре OJ287, расположенном в 3,5 миллиарда световых лет от нас в созвездии Рака.в (одна ВН-болтаеться вокруг другой)-наверное ,там до этого тоже был" взрыв"-но только наверно ВН-"облочку"-выталкнула ,а "нейтронную часть" притянула к себе Н. з. потеряла устойчивость и в результате релятивистского гравитационного коллапса превратилась в чёрную дыру( соседка ,вокруг к-рой она вращаеться,ей в этом"хорошо помогла")....на этот раз никакой глубокомысленности одни домыслы...

(написано анонимно) 14.01.2008 15:18 (#)

некот. люди б

****

Ученый (мало) 13.01.2008 04:27 (#)

"черные дыры в этих галактиках должны вращаться со скоростью, приближающейся к теоретически возможному пределу". Чем определяется этот предел? (если не скоростью движения поверхности, и какой, к черту поверхности, откуда ей взяться...) и возможна ли в принципе такая скорость вращения, при которой гравитация не в состоянии удерживать массу?

Vip borisov, 13.01.2008 09:57 (#)
60

"Поверхностью" черной дыры считают ее горизонт событий (в случае невращающейся незаряженной шварцшильдовской он совпадает со сферой, из-под которой ничего не в силах вырваться, но в случае вращающейся ЧД появляется еще эргосфера (там можно побывать и выйти наружу, но невозможно находиться в состоянии покоя), да и вообще будет два горизонта событий). Согласно решению Керра, при исключительно быстром вращении всякие горизонты событий исчезают, и в нарушение "закона космической этики" остается т.н. "голая" кольцевая сингулярность.

DROMOS MUSAGET 15.01.2008 04:20 (#)

Господин Борисов, не имеет ли проблематика эргосферы чего-либо общего с квазарами? Заранее прошу прощения за бестолковый дилетантский вопрос.

Vip borisov, 15.01.2008 23:10 (#)
60

В центрах квазаров, согласно современным воззрениям, находятся сверхмассивные черные дыры. Еще есть ЧД небольшие, звездного происхождения. Одна группа от другой отличается массой и происхождением, а физикой они друг от друга в принципе не отличаются. У любой ЧД есть всего лишь три параметра - масса, заряд и скорость вращения. Эргосферы есть только у вращающихся ЧД. Разумеется, с равным успехом вращаться могут как сверхмассивные ЧД, так и звездной массы.

Vip borisov, 15.01.2008 23:20 (#)
60

Прочие "атрибуты" ЧД - аккреционные диски, джеты, облака газа и т.д. (то, благодаря чему, в частности, "работает" - светит квазар) - это, так сказать, сопутствующие элементы, принадлежащие нашему миру, а не "внутренностям" ЧД, они _по эту сторону_ горизонта событий и к собственно ЧД их не относят... хотя они и вызваны к жизни наличием ЧД.

Анонимные комментарии не принимаются.

Войти | Зарегистрироваться | Войти через:

Комментарии от анонимных пользователей не принимаются

Войти | Зарегистрироваться | Войти через: