Экспериментаторы ищут новые силы, предсказанные теориями суперструн
Исследователям из Университета Колорадо (University of Colorado at Boulder) удалось провести самый чувствительный на настоящее время эксперимент по оценке гравитационного взаимодействия между массами, разделенными расстоянием, всего лишь в два раза превышающим толщину человеческого волоса, но они не наблюдали при этом никаких предсказанных новых сил.
Полученные результаты позволяют исключить некоторые варианты теории суперструн, в которых соответствующий параметр воздействия новых сил из "свернутых" измерений находится в диапазоне от 0,1 до 0,01 мм.
В теории струн или суперструн, стрингов (string theory), которую считают самым перспективным подходом к долгожданному великому объединению - единому описанию всех известных сил и материи, предполагается, что все во Вселенной составлено из крошечных петель вибрирующих струн. Согласно различным вариантам теории суперструн, должны существовать еще по крайней мере шесть-семь дополнительных пространственных измерений помимо тех трех, которые для нас доступны, и теоретики полагают, что эти дополнительные измерения свернуты в маленькие пространства. Эта "компактификация" ("compactification") порождает то, что называют областями модули (moduli fields), которые описывают размер и форму свернутых измерений в каждой точке пространства-времени.
Области модули оказывают воздействия, сопоставимые по силе с обычной гравитацией, и согласно недавним предсказаниям, они могут быть обнаружены уже на расстояниях порядка 0,1 мм. Предел чувствительности, достигнутый в предыдущих экспериментах, позволял проверить силу притяжения между двумя массами, разведенными лишь на 0,2 мм, поэтому вопрос оставался открытым. Впрочем, открытым он остается и сейчас.
"Если эти силы действительно существуют, то мы теперь знаем, что они должны проявляться на меньших расстояниях, чем мы проверяли, - объясняет руководитель лаборатории, профессор Университета Колорадо Джон Прайс (John Price). - Однако, эти результаты сами по себе не опровергают теории. Необходимо только иметь в виду, что эффект придется искать на более коротких расстояниях и использовать установки с более высокой чувствительностью". Кроме того, исследователи уверяют, что подобные эксперименты сами по себе и не предназначены для того, чтобы подтверждать или опровергать теорию суперструн. "Идеи, которые мы проверяем - это только некоторые возможные сценарии, вдохновленные струнами, а не точные предсказания собственно самой теории, - заявил Джон Прайс в интервью Space.com. - Пока еще для струнной теории нет никакой возможности сделать точные предсказания такого рода, и я сказал бы, что никто не знает, будет ли струнная теория когда-либо способна к этому". Впрочем, эксперименты на меньших расстояниях, могут все же "добавить больше заплат к стеганому одеялу физики", и поэтому очень важно продолжать такого рода исследования, потому что "кое-что новое и "очень фундаментальное" может быть обнаружено".
Экспериментальная установка исследователей из Университета Колорадо, названная высокочастотным резонатором (high-frequency resonator), представляла собой две тонкие вольфрамовые пластинки (длиной 20 мм и толщиной 0,3 мм). Одну из этих пластинок заставили колебаться с частотой 1000 Гц. Движения второй пластинки, вызванные воздействием первой, замерялись очень чувствительной электроникой. Речь идет о силах, измеряемых в фемтоньютонах (10–15 н), или об одной миллионной части веса песчинки. Сила тяжести, действующая на таких небольших расстояниях, оказалась вполне традиционной, описываемой известным законом Ньютона.
Профессор Прайс предполагает продолжить эксперименты, чтобы попробовать измерить силы на еще более коротких расстояниях. Чтобы сделать следующий шаг, колорадские экспериментаторы удаляют покрытый золотом сапфировый экран между вольфрамовыми полосками, который блокировал электромагнитные силы, и заменяют его более тонкой медно-бериллиевой фольгой, позволяя массам сблизиться сильнее. Они также планируют охладить экспериментальную установку, чтобы уменьшить помехи от тепловых колебаний.
Безотносительно к судьбе теории суперструн, идеи дополнительных измерений, введенные в обиход почти сто лет назад (тогда над ними потешались многие физики) становятся необычайно популярными в связи с кризисом стандартных физических моделей, не способных объяснить новые наблюдения. Среди самых вопиющих фактов - имеющее множество подтверждений ускоренное расширение Вселенной. Таинственная новая сила, названная пока темной энергией (dark energy), расталкивает наш космос, действуя подобно некой антигравитации. Никто не знает, что за физическое явление лежит в основе этого. Что космологи действительно знают, так это то, что в то время как гравитация скрепляет галактики на "локальном" уровне, таинственные силы расталкивают их в больших масштабах.
Темная энергия может быть объяснена взаимодействиями между измерениями, теми, что мы видим, и теми, что пока от нас скрыты, считают некоторые теоретики. На ежегодной встрече AAAS (American Association for the Advancement of Science - Американской ассоциации развития науки), проведенной в Денвере в начале месяца, самые авторитетные космологи и физики выражали по этому поводу осторожный оптимизм.
"Есть смутная надежда, что новый подход позволит решить весь комплекс проблем сразу", - говорит физик Шон Кэрролл (Sean Carroll), доцент из Чикагского университета.
Все эти проблемы неизбежно группируются вокруг гравитации, сила которой была рассчитана еще Ньютоном более трех столетий назад. Гравитация была первой из фундаментальных сил, описанной математически, но она все еще наиболее плохо изучена. Разработанная в 20-х годах прошлого века квантовая механика хорошо описывает поведение объектов на атомном уровне, но не очень-то "дружит" с гравитацией. Дело в том, что хотя гравитация и действует на больших расстояниях, все же она очень слаба по сравнению с другими тремя фундаментальными силами (электромагнитные, сильные и слабые взаимодействия, которые властвуют в микромире). Понимание гравитации на квантовом уровне, как ожидается, свяжет квантовую механику с полным описанием других сил.
В частности, ученые долго не могли определить, действителен ли закон Ньютона (обратная пропорциональность силы квадрату расстояния) на очень маленьких расстояниях, в так называемом квантовом мире. Ньютон развивал свою теорию для астрономических расстояний, вроде взаимодействий Солнца с планетами, но теперь оказалось, что он действенен и в микромире.
"То, что происходит прямо сейчас в физике элементарных частиц, гравитационной физике и космологии, очень напоминает то время, когда квантовая механика начала объединяться", - говорит Мария Спиропалу (Maria Spiropulu), исследователь из Чикагского университета, организатор семинара AAAS по физике дополнительных измерений (physics of extra dimensions).
Источники:
University of Colorado researchers conduct most sensitive search for new forces - Public release
Gravity test confines string theory dimensions - New Scientist
Strings Attached: New Study Puts Limits on Physics of Extra Dimensions - Space.com
Дословно
Юрий Манин
Основная задача теоретической физики, завещанная двадцатым веком двадцать первому, по традиции формулируется как объединение теории гравитации с квантовой теорией поля. Математический язык теории квантовых струн и мембран сохраняет рудименты терминологии этого классического периода, но его физическая семантика радикально изменилась и, к сожалению, не поддается прямому сравнению с реальностью. С чем мы имеем дело сейчас, с гениальными догадками или с фундаментальными заблуждениями? Математическая красота и плодотворность этих идей поразительны, и харизматическое обаяние творческой личности Эда Виттена (Edward Witten), который инициировал многие из них, неотразимо. И, тем не менее, может оказаться, что как физика все это построено на песке...
Статьи по теме
Экспериментаторы ищут новые силы, предсказанные теориями суперструн
Самый чувствительный на настоящее время эксперимент по оценке гравитационного взаимодействия на сверхмалых расстояниях не дал новых козырей в руки сторонников теории суперструн. Но, несмотря на все это, идеи дополнительных измерений становятся необычайно популярными в связи с кризисом стандартных физических моделей, не способных объяснить новые наблюдения - ускоренно расширяющейся Вселенной, в которой царит темная энергия.
Обнародован "портрет" юной Вселенной, полученный зондом WMAP
Новые данные от зонда WMAP обеспечили космологов информацией, позволяющей нарисовать реальную картину раннего этапа в развитии Вселенной. Кроме того, определен возраст нашего мира с беспрецедентной точностью. Он составляет 13,7 млрд лет. Самое большое удивление ученые испытали, когда при анализе данных выяснилось, что первая генерация звезд появилась спустя всего лишь 200 млн лет после Большого взрыва.
Астрономы обнаружили "потерявшиеся" барионы
Астрономы обнаружили новый тип разогретого межгалактического газа, с помощью которого можно локализовать невидимое присутствие темного вещества во Вселенной. Газовое облако, в триллион раз массивнее, чем наше Солнце, и в 150 раз более горячее, окружает нашу местную группу галактик, в которую входит Млечный путь, туманность Андромеды и еще приблизительно 30 мелких галактик.
Впервые удалось измерить скорость гравитации
Впервые с приемлемой точностью удалось измерить скорость гравитации. Измерялось небольшое видимое изменение позиции квазара, вызванное изгибом пути радиоволн от этого источника в поле тяготения Юпитера. Результат важен с точки зрения "закрытия" некоторых вариантов современных теорий и поддержки других - он связан с космологическими теориями множественных вселенных и так называемой теории струн или суперструн.
Вселенная во власти "темной энергии": новое доказательство
Наблюдения за отдаленными квазарами показывают, что основная часть энергии во Вселенной содержится в форме таинственной "темной энергии". Долгое время считалось, что модель расширяющейся Вселенной, по крайней мере, на современном ее этапе, позволяет обойтись без этой новой сущности.
Постоянство гравитационной постоянной G под сомнением
Новый эксперимент швейцарских физиков, поставленный для уточнения значения гравитационной постоянной G, прибавил весомости довольно спорной теории, согласно которой на силу гравитации оказывает влияние магнитное поле Земли.
Капли сверхплотного кваркового вещества прошивают Землю насквозь
Исследователи выявили два сейсмических события, которые, как они считают, могли быть вызваны исключительно проходом сквозь Землю кварковой материи - формы вещества, до сих пор не обнаруженной в экспериментах. Впрочем, есть свидетельство того, что такая странная кварковая материя встречается в космосе, среди некоторых экзотических звезд.
Ранняя Вселенная: впервые удалось определить размеры реликтовых галактик
Астрономы Израиля и США нашли первое прямое подтверждение тому, что по крайней мере некоторые галактики размером с Млечный путь уже успели сформироваться, когда Вселенной от роду было меньше миллиарда лет. На иллюстрации - смоделированная структура ранней Вселенной. Первые галактики размером с Млечный путь выглядят как яркие пятна в вершинах этих своеобразных галактических нитей.
Загадка солнечных нейтрино решена
Удалось обнаружить эффект "исчезновения" нейтрино. Этот эффект свидетельствует о том, что нейтрино имеют массу и могут осциллировать - то есть превращаться из одного типа в другой. Стандартная модель элементарных частиц, которая успешно использовалась фундаментальной физикой с 70-х годов прошлого века, требует серьезной модернизации.
Стивен Хокинг считает, что окончательной теории Вселенной может и не существовать
Все теории, развиваемые до настоящего времени для того, чтобы объяснить Вселенную, "являются либо противоречивыми, либо неполными", - заявил Хокинг. Он сослался на работы Курта Гёделя, чешского математика, автора знаменитой теоремы Гёделя, согласно которой в пределах любой области математики некоторые суждения никак не могут быть ни доказаны, ни опровергнуты.