Физики, возможно, наблюдали магнитные монополи
Поль Дирак в 1931 году выдвинул гипотезу, согласно которой в природе должны существовать некие экзотические частицы, являющиеся переносчиками изолированных "магнитных зарядов" - магнитные монополи. Но до сих пор все попытки обнаружить в эксперименте эти неуловимые частицы были безуспешными. Однако теперь группа физиков из Японии, Китая и Швейцарии утверждает, что им все-таки удалось найти косвенное свидетельство существования таких монополей Дирака. Они провели наблюдения так называемого аномального эффекта Холла (появление в проводнике с током плотностью j, помещенном в магнитное поле H, электрического поля Ex, перпендикулярного H и j) в кристалле-ферромагнетике (в ферромагнетиках на электроны проводимости действует не только внешнее, но и внутреннее магнитное поле, что и приводит к появлению необыкновенного (аномального) коэффициента Холла) и теперь уверены, что объяснить полученные результаты можно только с помощью магнитных монополей.
Принципиальное "неравноправие" между электрическими и магнитными полями, поведение которых описывается с помощью очень похожих уравнений - это одна из самых старых загадок в физике. Почему можно получить изолированные положительные и отрицательные электрические заряды, а "северные" и "южные" магнитные полюса никак нельзя разделить? Дирак связал существование таких магнитных монополей с квантованием электрического заряда - другой загадкой, которая все еще не дает покоя ученым.
Существование магнитных монополей также следует из некоторых теорий объединения электрослабых и сильных взаимодействий. Однако масса предсказанного монополя оказалась очень большой по масштабам мира элементарных частиц - приблизительно 1016 гигаэлектронвольт или 10-8 грамм, - чтобы монополи могли быть обнаруженными в экспериментах на современных ускорителях. Слишком редкими они должны быть и в "естественных" условиях.
Теперь вместо того, чтобы искать магнитные монополи в реальном пространстве, Иошинори Токура (Yoshinori Tokura) из японского Национального института передовых технологий и прикладной науки (National Institute of Advanced Industrial Science and Technology - AIST) и его сотрудники обратились к пространству импульса - математическому псевдопространству фермиевских квазичастиц (электронов проводимости и "дырок"), в котором "располагаются" ферми-поверхности (изоэнергетические поверхности в пространстве квазиимпульсов, отделяющие области занятых электронных состояний от областей, в которых электронов нет), зоны Бриллюэна (зоны "разрешенных" значений энергии электронов в твердом теле, области, включающие в себя все трансляционно-неэквавалентные значения квазиимпульсов, характеризующих состояние квазичастиц) и так далее. Выяснилось, что поведение магнитных монополей в пространстве импульса тесно связано с аномальным эффектом Холла.
Токура и его сотрудники поместили высококачественный кристалл, изготовленный из стронция, рутения и кислорода, в магнитное поле, ориентированное вдоль некой оси z, а затем измеряли поперечное удельное сопротивление - удельное сопротивление вдоль оси y, - при этом ток тек в направлении x. Они нашли, что удельное сопротивление изменялось с увеличением температуры не линейно, как следовало ожидать, а скачками.
Исследователи также измерили поперечную оптическую проводимость тонкой намагниченной ферромагнитной пленки, воспользовавшись так называемой керр-микроскопией (в основе лежит магнитооптический эффект Керра - эллиптическая поляризация света, отраженного от поверхности образца) с высоким разрешением, и нашли острый пик в области низких энергий. По их словам, этот пик можно объяснить только присутствием монополей в структуре зоны кристалла.
Японские, китайские и швейцарские участники эксперимента полагают, что оба эти аномальных эффекта представляют собой те самые "отпечатки пальцев" реальных магнитных монополей. Теперь планируется изучить материалы, которые показали бы еще большие аномальные эффекты. "Законы электромагнетизма - отправная точка для каждой области физики, - говорит Кей Такахаши (Kei Takahashi) из Женевского университета, принимавший участие в этих исследованиях. - И с этой точки зрения мы доказали, что можем изучить большинство разделов физики - включая физику элементарных частиц и космологию - в экспериментах на твердых кристаллах".
Источник:
Have physicists seen magnetic monopoles? - PhysicsWeb
Справка
Магнитный монополь -
гипотетическая частица, обладающая положительным или отрицательным "магнитным зарядом" - точечным источником радиального магнитного поля. Магнитный монополь можно представлять как отдельно взятый полюс длинного и тонкого постоянного магнита. Магнитный заряд определяет напряженность магнитного поля совершенно так же, как электрический заряд определяет напряженность электрического поля.
(Физическая энциклопедия, М., 1990)
Статьи по теме
Физики, возможно, наблюдали магнитные монополи
Поль Дирак в 1931 году выдвинул гипотезу, согласно которой в природе должны существовать некие экзотические частицы, являющиеся переносчиками изолированных "магнитных зарядов" - магнитные монополи. Но до сих пор все попытки обнаружить в эксперименте эти неуловимые частицы были безуспешными. Однако теперь группа физиков из Японии, Китая и Швейцарии утверждает, что им все-таки удалось найти косвенное свидетельство существования таких монополей Дирака.
Новая теория шаровых молний
Джон Джилман из Калифорнийского университета в Лос-Анджелесе недавно предположил, что по крайней мере одно из свойств шаровой молнии - когезию (cohesion), способность удерживать частицы, составляющие оболочку светящегося шара, вместе на протяжении десятков секунд или даже минут - можно объяснить в терминах атомов Ридберга. Однако другие исследователи, занимающиеся изучением этого феномена, отнеслись к такому выводу скептически.
Получен рекордный ультрахолодный "атомный снежок"
2500 атомов натрия охладили до половины миллиардной части градуса выше абсолютного нуля - температуры, при которой колебания атомов почти полностью замирают. В результате получается ни много ни мало как принципиально новое, пятое состояние вещества - так называемый конденсат Бозе - Эйнштейна.
Силу, возникающую из пустоты, приспособят к чему-нибудь путному
Генрих Казимир еще в 1948 году предложил эксперимент, который мог бы подтвердить квантовую теорию физического вакуума (то, что вакуум на самом деле не пуст, а заполнен то и дело виртуально возникающими и исчезающими парами частиц и античастиц). Теперь американские исследователи сумели проверить этот эффект с точностью до 0,5 %. Выяснилось, что эффект Казимира действительно должен серьезно влиять на наноразмерные устройства.
Последняя нерешенная проблема классической физики близка к решению благодаря сверхтекучему гелию
Это кажется невероятным, но теории гидродинамической турбулентности в завершенном виде не существует до сих пор, созданы только так называемые полуэмпирические теории турбулентности. Вообще это является одной из важнейших проблем современной теорфизики. Теперь сделан важный шаг в описании турбулентности в сверхтекучем гелии-3, что может помочь, наконец, в решении проблемы турбулентности и в классических жидкостях.
Большой взрыв руками физиков-ядерщиков: подтверждено получение кварк-глюонной плазмы
Недавние контрольные эксперименты добавили уверенности "творцам Большого взрыва" из Брукхэвена: похоже, им действительно удалось получить кварк-глюонную плазму - то есть материю, находящуюся в принципиально новом состоянии. Согласно современным теориям, кварк-глюонная плазма существовала только в первые 10-5 с после Большого взрыва. Когда-то предрекали, что подобные эксперименты могут привести чуть ли не к концу всей нашей Вселенной или, по меньшей мере, к формированию микроскопической черной дыры, которая затем затянет внутрь себя все, до чего сможет дотянуться.
Загадка солнечных нейтрино решена
Удалось обнаружить эффект "исчезновения" нейтрино. Этот эффект свидетельствует о том, что нейтрино имеют массу и могут осциллировать - то есть превращаться из одного типа в другой. Стандартная модель элементарных частиц, которая успешно использовалась фундаментальной физикой с 70-х годов прошлого века, требует серьезной модернизации.
Физики собираются проститься с килограммом
Недавно в ходе точных измерений параметров монокристалла кремния с помощью рентгеновских лучей было получено новое значение для числа Авогадро. Эта работа проходила в рамках международной программы, направленной на пересмотр эталона килограмма. Килограмм решено определить в терминах атомных и фундаментальных констант, как и все остальные системные единицы. Тем более, что нынешний материальный эталон килограмма, от которого в конечном счете зависит точность измерений во всем мире, постепенно испаряется и теряет массу.
Физики открыли "мятежную" субатомную частицу
На линейном ускорителе в Стэнфорде идентифицировали новую субатомную частицу Ds (2317). Эта частица представляет из себя необычный "сплав" "очарованного" кварка и "странного" антикварка. Ее масса оказалась существенно ниже, чем можно было бы ожидать. В качестве альтернативы рассматривается и такая возможность: частица могла бы быть в новом, до настоящего времени невиданном состоянии - ассоциация четырех кварков.
Астрономы обнаружили "потерявшиеся" барионы
Астрономы обнаружили новый тип разогретого межгалактического газа, с помощью которого можно локализовать невидимое присутствие темного вещества во Вселенной. Газовое облако, в триллион раз массивнее, чем наше Солнце, и в 150 раз более горячее, окружает нашу местную группу галактик, в которую входит Млечный путь, туманность Андромеды и еще приблизительно 30 мелких галактик.
Super-WIMPs: темная материя может оказаться необнаружимой в принципе
90 % всей материи Вселенной не просто скрывается в виде "не испускающего свет" вещества, а содержится в форме частиц, названных super-WIMPs (сверхслабо- взаимодействующие массивные частицы), перед которыми, в отличие от "просто" WIMPs, совершенно бессильны все известные способы обнаружения темного вещества.
"Частица бога" не откроет тайну американцам
Один из ключевых вопросов современной физики высоких энергий - подтверждение или опровержение существования теоретически предсказанной еще в 1964 году экзотичной субатомной частицы, называемой бозоном Хиггса. Предполагается, что бозон Хиггса сыграл основную роль в механизме, посредством которого некоторые частицы (кварки, лептоны) во время Большого взрыва приобрели массу, а другие остались безмассовыми (фотоны).
Экспериментаторы ищут новые силы, предсказанные теориями суперструн
Самый чувствительный на настоящее время эксперимент по оценке гравитационного взаимодействия на сверхмалых расстояниях не дал новых козырей в руки сторонников теории суперструн. Но, несмотря на все это, идеи дополнительных измерений становятся необычайно популярными в связи с кризисом стандартных физических моделей, не способных объяснить новые наблюдения - ускоренно расширяющейся Вселенной, в которой царит темная энергия.
Уфимским ученым за электропроводящие полимеры сулят "нобелевку"
Сенсационное открытие сделали башкирские ученые. Оно совершит переворот в мире физики. Сотрудники уфимского Института физики молекул и кристаллов заставили бежать электрический ток по полимерам. До сих пор ни одному научному институту мира такого не удавалось. По всей видимости, еще большее значение подобное открытие будет иметь для грядущей эры нанотехнологий.
Постоянство гравитационной постоянной G под сомнением
Новый эксперимент швейцарских физиков, поставленный для уточнения значения гравитационной постоянной G, прибавил весомости довольно спорной теории, согласно которой на силу гравитации оказывает влияние магнитное поле Земли.
Физики надеются обнаружить изменение фундаментальных констант со временем
Две группы физиков на протяжении последних лет провели целый ряд аккуратных экспериментов в надежде обнаружить непостоянство природных констант, до сих пор считавшихся не изменяющимися со временем. До настоящего момента данные на эту тему добывались астрофизическими методами и указывали на возможность подобных вариаций.